
Two Party double deposit trustless escrow in
cryptographic networks and Bitcoin.

David Zimbeck
http://www.BitHalo.org

Abstract—Crypto-currency is a form of decentralized digital
currency that has changed the world of finance over the past
several years. Bitcoin[6] lacks a central authority and protects
anonymity, while allowing a relatively low-cost alternative to fiat.
It opens the doors for international exchange of commodities
and has the potential to change how business is conducted. The
signature and scripting system that Bitcoin uses allows for the
creation of smart contracts. Also using signatures, it is possible
to create accounts that require multiple signatures (multisig
accounts) as well as transactions with multiple inputs and outputs.
There has been discussion of some of the current weaknesses
with smart contracts. We address these weaknesses to make
smart contracts immediately accessible on the Bitcoin network.
As proposed, this protocol offers a system of commitment schemes
and business protocols that greatly reduces the issues of extortion
and malleability from two-party escrow.

Keywords: Bitcoin, cryptography, blockchain, smart con-
tracts, escrow

I. INTRODUCTION

According to the Bitcoin wiki page for smart contracts
[3], there are some drawbacks to the current protocol. Weak-
nesses with transaction replacement can jeopardize commit-
ment schemes. Some of the proposals discussed such as
”Secure multiparty computations on Bitcoin” [4] or atomic
trading [9] suffer from a set of weaknesses which has prevented
the early arrival of Bitcoin 2.0. First, transaction replacement
has been disabled in the Bitcoin protocol. Second, transaction
malleability can completely interfere with ”future” transactions
by mutating the transaction id (txid).

Bitcoins scripting system relies on a series of inputs and
outputs. Each input is in a certain position, has a value and
an address, and has a unique identifying txid number. The
outputs can be one or many, and they are a list of addresses and
values respectively. Signing is done using public and private
key encryption thanks to Satoshi Nakamoto’s brilliant solution
to the ”Two Generals problem” [6].

The scripting system has a variety of script hashes which
were supposed to allow for a myriad of different contracts
[8]. Our protocol does not actually rely on those although it
is worth mentioning. Each input needs to be signed by any
associated party and, in the case of multisig accounts, each
party will sign their portion of each input.

The problem of not being able to replace transactions gives
rise to many different extortion and double spend attacks.
Additionally smart contracts suffers from a problem called
”transaction malleability.” Before a transaction is broadcasted
to the cryptographic network, one of the parties will be in
possession of the raw transaction. Although the signature itself

can not be forged, it can, however, be mutated. By changing
small bits of information, the transaction can be changed
sufficiently to result in an entirely different txid. Although
this does not jeopardize the security of the network it does
make future commitments base on that id useless. Also if raw
transaction data is exchanged before broadcasting, then one
of the parties can attempt to submit early, invalidating some
transactions.

Multisig accounts can be traditionally used as an escrow
requiring 2 of 2, 2 or 3 or 3 of 3 signatures to confirm the
spending of any input. A two party escrow (2 of 2 multisig) can
suffer from the problem of extortion as well. A normal escrow
(2 or 3 multisig) can result in collusion, bad judgment, and
the usual problems which arise when entrusting third parties
with your assets.

This protocol system solves these problems in a very
simple and discrete manner which will greatly reduce the risk
of loss, allow for trustless smart contracts, and allow trade
between perfect strangers even if the parties themselves can
not be trusted. Its implications and significance to the world are
even beyond the scope of smart contracts and cryptographic
networks. This paper forms an ideology and foundation for
commitment schemes based on risk/reward combined with
naive protocols. For the first time ever, untrustworthy parties
will actually be compelled to perform in good faith.

II. THE PROTOCOL

A. The Agreement

For this example we shall assume two parties namely Bob
and Alice wish to enter into an escrow to perform any type of
contract. Perhaps Bob wishes to purchase bitcoins using cash
from Alice, They decide to form a trustless two-party escrow.

First Alice generates a public (p1) and private key (pv1)
pair for the prospective escrow. Alice sends a request to
sell the bitcoins to Bob over the cryptographic network by
sending, for example, the smallest possible payment she can
of .00005500 bitcoins using a cipher that is open to the public.
This cipher decodes a fake address attached as an additional
output which was actually an encrypted personal message that
reveals her BitMessage[2] address, and as a result, a secure
communication channel can be established while at the same
time circumventing spam. Now the parties are free to exchange
the contract details without interference. Please note, Bob and
Alice are not limited to communicating this way: They can
employ any communication protocol they find suits them best.
They may choose to use a custom public/private key protocol,
BitMessage or e-mail. In the spirit of things, we choose to
keep communication encrypted under BitMessage for security



purposes and to avoid ”eavesdropping.” Bob creates the hand
shake with Alice by sending his new public key (p2) from a
key pair (p2 and pv2), and the same transaction details along
with his first txid which we will call tx1. He does not broadcast
tx1 nor does he reveal the raw transaction details. Instead he
sends the encoded hex which results in the first txid. Tx1
spends inputs of his choosing into a normal or multisig account
to which he holds the keys. This is a ”temporary funding
account.” The reason for the funding account is that Bob
and Alice want to perform the transactions in a streamlined
simultaneous fashion. They want to create a series of future
transactions.

Ironically, in order to create a future transaction, you must
have a signed transaction. Therefore, it would be impossible
to generate the future txids without the uncertainty that the
second party to receive a signed tx1 would not sign and submit
it early. Thus, a temporary account circumvents the ”early
broadcast problem”. Since the temporary account is not funded
yet and Alice does not have the raw version of tx1, it would
be impossible to submit anything to the network without Bobs
approval.

B. The Creation Process

Using the public key that Bob sent, Alice generates the
new multisig account (escrow). She creates tx2, which spends
funds into her temporary funding account. She does not
broadcast this either. She then writes tx3 that spends the
inputs of tx1 and tx2 into the escrow. She signs this. She
then creates a transaction that spends tx3 as 99.9% fees to
the Bitcoin miners [5] to use as a penalty in case she breaks
the commitment (timeouttx). This penalty is one which both
Bob and Alice will suffer if they try to play fowl or cheat
the deal. If there are reservations about collusion with miners
or in the case of ”proof of stake” networks, then the funds
can also be sent to a verifiable unspendable address such as
1BitcoinEaterAddressDontSendf59kuE. Alice signs timeouttx.

C. Malleability Refund

For this example Alice and Bob agreed that the risk of
the party broadcasting the transactions was a high risk and
could perhaps mutate tx3 to extort from the counter-party.
Thus, tx4 is created by Alice. In tx2 Alice decided to send
a larger amount to be destined for the escrow. She does not
plan on keeping this as a deposit. Instead she writes tx4
which spends one of the inputs from tx3. In this scenario,
tx3 pays to the escrow in two separate denominations scripted
as separate outputs to the same addressone for her refund and
the remainder for the escrow. Tx4 spends said input from tx3
back to herself as a reward for good behavior. Now, if Alice
tries to mutate the txid of tx3, she also invalidates her refund.
This creates a risk/reward scenario which can make the price
of extortion unbearable.

One thing to also note here: A very common escrow will be
where Bob and Alice have an equal deposit with the addition
of Alice’s Bitcoin that was being sold as per their original
agreement. So, they may be in escrow at an initial ratio of
2:1. This is by no means standard. They may also choose to
perform micro-trading (sending many small payments instead
of one large one) or any other form of contracting. However,

if Alice is going to be in escrow for more than Bob, it would
make sense for her to broadcast anyway. Therefore in that
situation Alice and Bob may agree to forego tx4 altogether.

D. Finalizing the Escrow Deposits

Now that Alice has composed all the transactions, she signs
them all and sends them to Bob. First she takes p2 and uses
it as a cipher for an encrypted message. In this message she
will send all of the raw transaction data with the exception of
tx2. She can know that the message is secure since it uses p2
to conceal the data. This communication is not limited to the
Bitcoin network, although that may be a good way to mitigate
spam and automate the process. Rather, communication can
equally be sent in any medium since the only person capable
of decrypting it is Bob. In the case of BitMessage this may
be redundant since BitMessage is theoretically secure. Bob
receives this message and confirms it is from Alice. He then
uses pv2 to decrypt the message. He now can freely review and
sign everything. If Bob is happy with the agreement, he can
use p1 to encrypt a message for Alice. Now that everything is
signed, there are two copies of timeouttx. Thus, both parties
can be secure during escrow negotiations since the risk is
spread and structured according to their level of trust for each
other. So now Bob sends every tx back to Alice including tx1.
Now the transactions are all potentially valid.

E. Broadcasting and Managing Intercepted Transactions

Alice now uses pv1 to decrypt the final message and she
then broadcasts all of the transactions with the exception of
timeouttx. There is the remote possibility that a miner will be
able to intercept the transactions and randomly mutate one of
the txids.

The protocol includes two applications to mitigate prob-
lems which could arise from this. Firstly, multisig accounts
also deemed ”p2sh” accounts have been described as more
resistant and expensive to mutate [7]. Although I do believe
this will require a lot of scrutiny, nonetheless my protocol
uses p2sh accounts for every step of the transaction. Secondly,
Bob and Alice will most likely be using a client that will
automatically attempt to re-sign any of the broken transactions.
If tx3 gets broken, Bob and Alice could take their coins back
and attempt to sign everything again. If tx4 or timeouttx is
broken, they will most likely re-sign them out of good faith.
Furthermore and more importantly, the clients themselves are
naive and will plan on deleting the escrow keys regardless of
whether a destruction exists or not. Neither party can be sure
that the counter-parties client will not automatically honor the
protocol if violated. Naive multi-party protocols will cause a
whole new wave in thinking about decentralized computing
in the near future for this reason. It will be the basis for
decentralized companies and software.

F. Finalizing Escrow

At this juncture, the funds are now in escrow. One of the
variables in the contract was the time limit of timeouttx. This
time limit is agreed upon in advance. It can be measured
in hours, days, or quite possibly the blockchain itself. (The
blockchain is the shared/public ledger of all Bitcoin transac-
tions.) Bob and Alice can write any transaction from here.



They most likely will try to cancel or confirm upon the receipt
of the commodity or completion of the agreement.

G. Taking Extra Precautions against Extortion

Both parties can take their own security one step further.
They can choose to use ambiguous funding information such
as a Western Union, bank deposit, gift cards, cash or prepaid
debit cards. In the exchange of coins or commodities, there
are several ways to conduct business without revealing the
identity of the parties. One simple way is to use a public
bulletin board or a BitMessage channel to post their contract
to the world. This is especially useful for cash deals. Even
in the case of certain outsourced employment contracts, it
is reasonable to communicate in a filtered manner using an
encrypted channel. As mentioned briefly in section 3.5, naive
clients can communicate in a filtered manner with expectations
of only certain types of information and commands thus
completely obliterating theft and extortion. This revolutionary
style of decentralized/filtered communication can be the basis
for unlimited types of contracts and even decentralized Python
programming and decentralized autonomous companies. An-
other way to reduce risk greatly to the point of being almost
non-existent is by making a contract with small deposits at
a ratio that is roughly 1:1. Then the contract is completed
as a series of micro-payments or milestones. In this way, very
large deals can take place with relatively small initial deposits.
A special type of deal I refer to as ”micro-funding” would
perform potentially unlimited maneuvers under this contract
and can easily fund million dollar deals in a trustworthy risk-
free manner. A ”contract bridge” can be created in the same
way for virtually any application. Try to think of it as a form
of self-insurance.

Regardless, the proposal here is to mitigate risk further by
either filtering or eliminating extraneous information partially
or entirely. If Bob and Alice have nothing else to discuss but
the raw contract data itself, it makes threats impossible.

Fig. 1. Illustrating of the proposed protocol. Refund and timeout are signed
using Bob’s and Alice’s escrow private key. Everything is signed in advance.
Alice sends all her raw transactions to Bob to broadcast.

III. IMPLEMENTATION

This protocol has now been tested using a home made
program originally coded in python called BitHalo [1]. The
program itself is completely new, and is being published the
same time as this paper. Being open source, it should be

easy to review, audit and expand on the various different
permutations and methods of implementation of the protocol.
This is only the foundation and new more advanced protocols
will undoubtedly be proposed as a result of this paper. There
is technically no limit on the ways ”Smart Contracts” with two
deposits can be applied. The wallet addresses for BitHalo can
be reviewed by looking at the associated wallets addresses over
the Bitcoin blockchain explorer blockchain.info [10]. Open
source software is gaining ground, and we believe that these
concepts will evolve and expand at an ever increasing rate.

IV. CONCLUSIONS

The protocol has been described in the simplest terms. We
believe the result will be creation of a new paradigm in finance
where people will no longer have to depend on untrustworthy
third parties.

There was an example of a Bitcoin exchange that ”lost” the
equivalent of hundreds of millions of dollars. This behavior is
unacceptable, and it costs the consumers dearly. Furthermore
escrows in real estate transactions have been known to go
south and complete disappear. Banks have been known to
disappear throughout history as well. In fact, almost every
sector of economy that involves third parties runs the risk
of loss to the consumer. This protocol brings a whole new
set of solutions back into the hands of the individual where
they now have full control of who they decide to trust and
how they decide to structure that trust. Additionally this brings
confidence into the hands of young businesses that want to find
a way to earn the trust of their clientele. It is a very attractive
proposition in any employment contract knowing that both
parties employee/employer made an advanced commitment.

This also allows the creation of a bartering system that is
insured by the deposits themselves. Under the bridge of trust-
less contracts, two parties can perform potentially unlimited
maneuvers under the same contract. Two complete strangers
who were originally untrustworthy are now capable of building
trust despite their background, however dubious it may or
may not be. Our society relies on trust to conduct business,
form relationships, and exchange commodities. Finally after
all these years and millennia of waiting a proposal has finally
come to fruition. We hope this helps evolve an ever evolving
economy into one that is more secure from uncertainty.

REFERENCES

[1] BitHalo. http://www.bithalo.org. 2014.
[2] BitMessage. https://bitmessage.org/wiki/main page.
[3] Bitcoin Contracts. https://en.bitcoin.it/wiki/contracts.
[4] Daniel Malinowski Lukasz Mazurek Marcin Andrychowicz, Ste-

fan Dziembowski. Secure multiparty computations on bitcoin. IACR
Cryptology ePrint Archive, page 784, 2013.

[5] Bitcoin miners. https://en.bitcoin.it/wiki/mining.
[6] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,

2009.
[7] Salvaging refund protocols from malleability attacks using p2sh.

http://www.likelyanswer.com/10425812/salvaging-refund-protocols-
from-malleability- attacks-with-p2sh.

[8] Script. https://en.bitcoin.it/wiki/script.
[9] Atomic Trading. https://en.bitcoin.it/wiki/atomic cross-chain trading.

[10] David Zimbeck. Bithalo tests on blockchain.info:
https://blockchain.info/address/349hfhbui8x7d7uvaxklxfjch9fgovx7at.


